翻訳と辞書
Words near each other
・ Moduli of algebraic curves
・ Moduli scheme
・ Moduli space
・ Moduli stack of formal group laws
・ Moduli stack of principal bundles
・ Modulidae
・ Modulin
・ Modulo
・ Modulo (jargon)
・ Modulo operation
・ Modulo-N code
・ Modulok (rapper)
・ Modulon
・ Modulor
・ Modulus
Modulus (algebraic number theory)
・ Modulus (gastropod)
・ Modulus ambiguus
・ Modulus and characteristic of convexity
・ Modulus bayeri
・ Modulus calusa
・ Modulus carchedonius
・ Modulus guernei
・ Modulus Guitars
・ Modulus modulus
・ Modulus nodosus
・ Modulus of continuity
・ Modulus of convergence
・ Modulus of smoothness
・ Modulus robot


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Modulus (algebraic number theory) : ウィキペディア英語版
Modulus (algebraic number theory)

In mathematics, in the field of algebraic number theory, a modulus (plural moduli) (or cycle, or extended ideal) is a formal product of places of a global field (i.e. an algebraic number field or a global function field). It is used to encode ramification data for abelian extensions of a global field.
==Definition==

Let ''K'' be a global field with ring of integers ''R''. A modulus is a formal product
:\mathbf = \prod_^,\,\,\nu(\mathbf)\geq0
where p runs over all places of ''K'', finite or infinite, the exponents ν(p) are zero except for finitely many p. If ''K'' is a number field, ν(p) = 0 or 1 for real places and ν(p) = 0 for complex places. If ''K'' is a function field, ν(p) = 0 for all infinite places.
In the function field case, a modulus is the same thing as an effective divisor, and in the number field case, a modulus can be considered as special form of Arakelov divisor.
The notion of congruence can be extended to the setting of moduli. If ''a'' and ''b'' are elements of ''K''×, the definition of ''a'' ≡''b'' (mod pν) depends on what type of prime p is:
*if it is finite, then
::a\equiv^\ast\!b\,(\mathrm\,\mathbf^\nu)\Leftrightarrow \mathrm_\mathbf\left(\frac-1\right)\geq\nu
:where ordp is the normalized valuation associated to p;
*if it is a real place (of a number field) and ν = 1, then
::a\equiv^\ast\!b\,(\mathrm\,\mathbf)\Leftrightarrow \frac>0
:under the real embedding associated to p.
*if it is any other infinite place, there is no condition.
Then, given a modulus m, ''a'' ≡''b'' (mod m) if ''a'' ≡''b'' (mod pν(p)) for all p such that ν(p) > 0.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Modulus (algebraic number theory)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.